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Fig.2 Research framework about safety of AV in long-tailed environments

Safety-Critical Scenario Generation
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Safety-critical scenario generation is the main approach to
solving the problem of lack of data for edge scenarios. In our
work, the generation of safety-critical scenarios is regarded as
the problem of generating the trajectories Y, a scenario is

»

L)

B

.
LTI
llIllllIl |

)
I
I
I
I
I

i

defined as the sequence of scenes: E ) = (g T T B il 12 )
Y =[s%s",s% 8 ..,s], st= [81:85 585 » ;= [o}, 9t 08, 0¢] | dtar = (dmaz + dmin) /2 + Y2 * (dmaz — dmin) /2 . o L
’ 4 3 A Fig.6 Adversarial policy optimization ) o o
Considering that the environment for testing autonomous / snlt) =a4*z e :t +a2:t MI:HGO for safety-eritical scenario generation. . Herr HSIT tmaton moflel
driving is Markovian, where the next states are decided by the ——————— - diat(t) = bs x> + by xt* + by > +bo %t + by %t + by 1. I.Jn.reasona.ble objectives affect the quallty of scenario generatlop
current states and the policies of all the vehicles. Fig.5 Traffic Participants Model Ex1§t1ng studies generally adopI tIlC Q1stanc§ bétween ‘Fhe adversarial
= P i 8y W) 1. Low efficiency in t.ask generalizability | Veh1lee and the .AV as the optImlzatlon.obJectlve, .Whlch affegts the
Begin from the initial states, the scenarios evolve through the Due to the lack of pnor traftic knquedge in RL, agents are. Very prone to quality a.n.d efﬁc1enc¥ of scenarIo geperaﬂon. Es s§nt1ally, th.e object of
complex interactions of all traffic participants according to their unreasongble behaVIor‘ suc.:h as driving off the road ar}d violating t'rafﬁ.c safety-cr1t1ca1 sgffnarlo generaﬂop Is to maximize th.e r1sk. of the
driving policies respectively. rules during the optimization process. A lot of explf)ratlon .and learning is | | scenario. Thus it's more appropriate to use the quantified risk of a
Y =g (5%, Tav, Tow) » Moo = [M1, 72, ..., TN] peedecI for the agepts. to- gradually mastelj these l?as1cs, which leads to the scen.arlo as.the object of o.ptlmlz.atlon. S

Thus, safety critical scenario generation 1s described as: ineificiency anfl ‘:’I limitation of the e>fpe.m51on to different map s/tasks. 2. Risk-guided a(IYersarlal policy optlmIzatlgn : L

argmaz(so x,,. )R (8°, Taw, Tow) , 8.£.Y € h(M), 2. Traffic part1c1p'ants quel combining RL and traffic prior Ba§ed on the empirical lfnowledge of driving risk, we design a prior r.1sk
Therefore, we consider scenario generation i terms of two A.]ayered model 1r.1teg¥'at1ng traffic k-nowledge and the actor._network- of estimation model that 1rItegrates the state of the AV and the relative
factors: the policy of adversarial traffic participants Tabo reinforcement learning is proposed. Prior traffic knowledge‘mamly -c0n31s1-:s states of background V§hlcles. The model can prov1cIe dense'rewards for
and the initial states sO of road geometry, topology, traffic rules, and human driving habits. This all states to more efficiently guide scenario generation and improve the

enables the generation of scenarios for arbitrary working conditions. quality of the scenarios.

Zhaoyi Wang, Xincheng Li, Dengwei Wei, Liwen Wang, and Yanjun Huang, "Efficient Generation of Safety-Critical Scenarios Combining Dynamic and Static Scenario Parameters," in IEEE Transactions on Intelligent Vehicles, doi: 10.1109/T1V.2024.3402221.



Combining Generation of Dynamic and Static Scenario Parameters

Alternatively Optimization of Static and Dynamic Parameters  argmaz(c x,,,)R (s° Tav, Tow) ,5.t.Y € h(M),

1. A limitation of scene generation efficiency

Scenarios are constituted by two kind of parameters, dynamic parameters, which changes with time, and static parameters, which are constant during time. Due to the differences in the nature of the dynamic and static
parameters, existing research in safety-critical scenario generation is unable to optimize both of them, which limits the efficiency of scenario generation.
2. Alternatively optimization of static and dynamic parameters

We proposed a method to combine the generation of dynamic and static parameters by alternatively optimizing them. Dynamic scenario generation is considered as an optimization problem for trajectories as introduced
before, while static scene parameter generation is modeled as a search problem in the high-dimensional natural staters space built from naturally collected data. toitial state Algorithin o be tested
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Feature Extraction and Distribution Analysis

Diversity Enhancement based on Novelty Qualification

1. Reasons for the lack of diversity: A safety analysis framework for AV in long-tailed environments is proposed.
1) Parameter overlap between the generated scenarios for probabilistic reasons when a large number of scenarios are generated 1. Key feature extraction
imitation rioin A nonlinear feature extractor is designed to extract key features from a scenario.
ations of the original datase
2. Diversity enhancement based on novelty qualification High-dimensional scenario data are mapped into a low-dimensional feature space.
1) Dynamic trajectory generation: Introducing dynamic trajectory novelty loss into the objective function. 2. Latent Space Clustering for Type Analysis
2) Static scene generation: Learning from explored scene data via VAE to quantize scene novelty via reconstructed probabilities. Features are clustered to reveal the main type of safety-critical scenarios.
Modeling the novelty distribution of the initial state space to drive diverse scene generation. 3. Distribution Analysis
3) Learning the distributions from natural scene databases via VAE and sampling to obtain more scenes in similarly distribution. Modeling the distribution of safety scenarios and accident scenarios in latent space
through kernel density estimation, visualizing the parameter distribution of the
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Robustness Evaluation and Safety Boundary Inference

Data-Closed Loop Self-Evolving Mechanism

Data-Driven Safety Enhancement Mechanism AV Testing Considering Long-Tailed Distribution
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Fig.15 The framework of AV testing under long-tailed distribution and data-driven safety boundary identification Fig.16 Safety boundary analysis

Knowing its safety boundary is important for the operation of AV in open environments. However, scenarios
faced by AV in open environments tend to have more complexity and higher uncertainty. Even with a large
amount of test data, it's still challenging to analyze AV’s safety.

Considering the complexity of the scenarios as spatio-temporal sequences, as well as their high dimensionality
and complexity, we consider them as Markov reward processes, which enable online inference of accidents
and safety boundaries identification being achieved through data-driven risk estimation model which learns
from test data of the given algorithm. In addition, considering that existing methods can only test the safety of
algorithms in known scenarios, we propose to test the robustness of algorithms to unknown disturbances by
the cost of generating accident scenarios.
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Cloud Enabled Self-Evolve Mechanism

Safety-critical scenarios are endless due to the long-tailed distribution in the real world. Therefore, a good
algorithm should be able to continuously explore and overcome safety-critical scenarios to realize self-evolution.

Cloud Collaborative Mixed-Reality Testing Platform

Real-vehicle testing is limited by efficiency and cost to adequately assess algorithm performance, while simulation
environments suffer from simulation-reality gap problems and lack accuracy. Therefore, a mixed-reality testing
environment is implemented by cloud injection of virtual traffic scenarios, which ensures the accuracy of the
vehicle dynamics and road surface disturbance while maximizing the diversity and efficiency of testing.
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Fig.17 Case of mixed-reality testing

Fig.18 Framework of cloud collaborative mixed-reality testing
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